有人說, 雖然最終人類可能無法創造出人工智慧, 但是人工智慧還是會被工人給 "運作" 出來, 這邊的工人指的就是人類文明的結晶, 而這個結晶的實作之一就是 "演算法".
演算法說穿了就是把人從眼睛看到的事物, 透過一種想法或感知以及應證其經驗, 然後做出行為與動作的一連串步驟, 只是一個人能夠做到的, 就是有限的眼睛, 有限的經驗, 有限的判斷, 最後也只是做出有限的行動.
若是把這些有限放到非常大, 甚至速度是非常快, 舉個例子來說, 若是有一個醫生, 他擁有上億個醫治的經驗, 且每秒 10 次的測量出你的心跳, 血小板, 等等數字, 然後做出判斷預測, 隨時且即時的對應其可能性做出診治, 當然這個醫生不可能是人, 而是一套透過許許多多演算法所創造出來的系統, 只要其病症不是罕見或從未見過, 你認為這套系統難道不只會讓病情更快康復, 也會更降低醫生所須要的精力與錯誤率.
而能夠做到這件事的, 雖然靠的是電腦, 但說穿了還是背後的人, 背後的智慧結晶, 就是現在最熱門的 "巨量資料 (Big Data)" 這概念, 這概念實作與實現的基礎, 就是 "演算法", 而演算法就是把人的行為與想法變成一種模型, 然後把這模型透過程式去執行, 而執行的內容就是巨量的量化資料, 所以說透過演算法去延伸人的能力與智慧也不為過.
只是說要完成這樣的事情也不是只有演算法而已, 甚至應該說只是一個環節罷了, 要完成這環節, 至少要三個大環節才能做到:
1. 硬體, 網路與系統: 雖然說演算法最早可以追溯到 1680 年代的加法機, 甚至演算法之母是在 1850 年的 Ada, 但真的實用到廣為應用還是因為整個硬體架構, 包含計算能力, 記憶體, 傳輸資料等等的細部環節慢慢的組合起來變成實用的系統, 演算法才有真正的價值, 這本書也花了不少部份著墨這些技術的成長, 在某種觀點, 這才是決勝點.
2. 程式設計, 資料庫與其系統: 有了硬體與作業系統跟架構, 就要有相對應的軟體去寫作與實作出來, 畢竟這些都是靠人去完成的, 不是只有人能夠看到的硬體才是系統架構與實作, 程式設計才是把演算法實現的最本質的事, 當然要去能夠執行與串連運作, 是須要一個很完善的設記, 資料要儲存要有資料庫及相對應的硬體, 這些若沒去完成是不存在的.
3. 數學與演算法: 雖然說演算法是核心的核心, 若沒有前兩項也是無法有價值的, 但或許是因為前兩項的人才以現在的狀況是較多, 會了解數學與演算法的人較少, 所以其稀少性較高造成水漲船高, 只是這些都是整合的要素之一, 缺一不可, 當然最好是有人能夠對這三個項目都能夠了解, 在目前大家對資料演算法不夠了解下, 才能夠帶領真的完成有實用的系統.
最近有一本書叫 "演算法統治世界", 讓你知道這些過程是甚麼.........
雖然說這本書是完全是以說故事的方式帶出整件事, 但畢竟不是技術書, 所以並沒有讓你深入了解演算法, 無論就技術面或數學面都完全沒有提到, 若你是想說透過這本書知道這前因後果, 甚至知道未來的可能性, 但若知道甚麼是演算法, 是不太可能的.
畢竟在大學講甚麼是演算法, 最常用的教科書是一本超過 1000 頁的 Introduction to Algorithm, 這本書還只是個最基礎不過的介紹 (Introduction), 從入門到能夠實作出來, 進一步做出有用的系統, 不可能是只靠看這本書就完成的, 甚至我更擔心的是看過的人會由一些應用結果來猜測甚麼是演算法, 且跟本是錯誤觀念, 因此請大家千萬不要踏上這錯誤路徑.
但這本書只是為了讓完全不了解演算法的人, 有一個演算法對社會性與商業性影響的了解, 可是千萬不要拿著這本書去要求技術人員, 或以為技術人員就可以做出來, 因為這完全是兩回事, 因為從這本書到最後做出來, 還須要超過幾十本書到幾百本書, 但看完至少你對這議題有基礎的了解.
這本書從金融, 音樂創作與市場, 客服系統, 運動等等, 這些透過各式各樣的演算法去預測, 去創造出更高的價值或改善其準確度, 甚至對政治都能夠預測最後人心的走向, 這些不是天方夜譚, 這些都是實例, 只是這些都須要背後有大量的運算, 其中包含數學與程式設計.
當我們能夠把人的行為步驟寫成程式碼, 把事物給數量化之後, 很多事情不只能夠自動化, 此時效率與效能會比人類強很多, 而這本書就是在寫這幾十年來, 各個領域在這方面的努力與挑戰, 甚至是當時認為是天方夜談的, 現在早就已經有人做過了, 只是這個狂想須要付出很大的努力與代價.
所以我們現在也可以開始對未來做夢, 但更重要的是透過學習與實作, 把這個夢實現, ... 在此之前可以從這本書看看別人是怎麼做夢, 以及將之實現的, 無論你是不是在資訊界, 因為還有很多領域等我們去挑戰, 也因為這樣的開始, 這個世界都在改變.
圖取自: http://www.businessweek.com/articles/2012-09-06/book-review-automate-this-by-christopher-steiner
訂閱:
張貼留言 (Atom)
熱門文章
-
這個交大機車的故事不是在講交大很機車, 而是交大為甚麼能夠騎機車的故事... 甚麼? 很多人認為交大校園有一個條機車外環道是天經地義的事? 事實上不然, 這是經過許多抗爭得來的, 因為上一篇哈巴狗事件有很多回響, 所以我這篇來繼續講古. 機車在交大可以說是個文化, 尤其以前竹東算...
-
有時我總對自己做的東西沒甚麼信心, 從 Plurk.tw 一直到做了很多延伸的應用, 尤其自己知道美工排版不行, 所以常找人合作, 其中一個東西就是 "噗熱浪"... 事實上 Plurk.tw 比 Plurktop 還早做, 當然我們這邊只能從發文說開始運作開...
-
我是不做 "Me,too" 的, 但我知道粉絲團經營最重要的共同指標, 一個是觸及數, 另一個是互動數, 但這數字只有經營者知道, 即使從洞察報告可以看到你加觀察的幾個粉絲團, 最近文章的互動狀況, 但還是離真的狀況有點距離, 除外粉絲團可以比較的就是 ...
-
在系統調校的一開始, 我一定會問大家一個問題: "系統負荷 60% 是過高還是過低呢? 系統負荷 6% 是過高還是過低呢?" 當然這個 "過高過低" 指的是一種不正常的現像, 而在之前要有一個前提: "何謂不正常?", ...
-
總統府網站雖然相較很多網站並不是那麼重要, 但也因為其特殊性以及政治立場的角色, 是很容易一直被拿出來討論的, 至少這幾天就 Alexa 的觀點來看, 從 3000 名外進到 3000 名內 (見右圖), 流量也瞬間多了四倍, 也可以當作是一個小型的壓力測試了.. 至少這段時間也...
-
我們都知道網路詐騙是一個很嚴重的問題, 不下於假新聞, 雖然這些事都不是在網路上獨特的社會現像, 因為在現實社會這些欺騙的事層出不窮, 但透過網路的高效率散播, 有時比現實社會來得嚴重. 在臉書投廣告, 大部份都是須要透過粉絲團來操作, 若是我們能夠 "定位...
-
目前已知道 Formula/Equation 是: 1. Unemployment: ind*3+com-pop (分母是Pop) 2. Transportation: tra*5+100-pop (分母是Pop) 3. Criminality: sec*4+300-pop (分...
-
專頁儀表板除了作為社群編輯的工具外,更想做的是想要成為 "透過社群來了解社會" 的儀表板,因此對於 "屬性" 上做了各個面相的定義,除了常見的分類外,更重要的是依立場,議題來去 "標籤"。 因此會有 "...
-
這幾天,公布了台南與高雄這兩個地方的民進黨內部的電話民調,雖然這跟真的投票沒有絕對關係,但做民調是很花成本的,當然除非有內參保密民調與對外公開民調外,民調還是很有效的 "政治工具"。 談論人數一直是很好的指標,尤其是在選舉的時候,因為選舉最後決勝負是得票數...
-
一些無聊晃進來的朋友應該有發現, 左上角多了幾個之前沒看過的 gadget, 因為我又開始做無聊事了... 看到許多人裝 Google Friend Connect, 而我個人對較為開放的 Protocol 是採較為正面的態度, 所以就裝起來玩玩看, 覺得這是一個可以發展的東西,...
沒有留言:
張貼留言