任何電子商務類型網站, 除了商品上架外, 一定會問的是如何銷售, 當然這些一定是架構在商品的功能與消費者的須求, 雖然有時透過行銷的手法, 來 "創造" 出商品功能與消費者的須求, 這些通常會創造不少業積, 但在很多狀況可能造成 "消費錯誤" 的機會有時會更高, 雖然感覺一時有業積的進來, 但最終也不是一個好的消費體驗.
所以就會有人在問, 以一個電子商務型網站的通路, 到底要如何推薦給消費者對的東西?
不得不否認, 最後賣場主打的一定是高利潤, 高銷售, 或者是跟廠商配合商品, 畢竟就商品操作人員能力有限的情型下, 人力限制是最大的瓶頸, 因為一個好的商品操作人員無論就市場敏感度, 商品本質, 銷售方式與對市場的知識與品味, 往往會決定一個商品最後的銷售狀況, 如何把這能力透過系統去覆制是每一家公司都想追求的事.
但事實上以目前的技術來看, 在面對少量商品與少量客群, 有經驗的商品操作人員還是無敵的, 只是我們面臨到的問題是:
1. 真的有經驗與能力的商品操作人員真的很少
2. 電子商務網站面對的是大量的商品與大量的客群
也就是說, 好的人才的確是最稀少可貴的資源, 而在這前題下, 我們應該設計出甚麼樣的商品推薦系統來輔助銷售呢? 事實上很多人在被 Data Mining (資料探勘) 與 Big Data (巨量資料) 的洗腦下, 想到的大多是這些道聽徒說的方法, 但事實上完成這些系統都不難, 只是任何系統都有很多前題與成本, 以及最後產出的效應, 甚至更應該說, 人有趣的地方在於多元, 每一個人的須求都不一樣, 所以推薦系統也該不一樣才對, 想要追求一個完美系統這樣的邏輯是很危險的.
那我們來分幾個層面來去導引大家去實作推薦系統:
I. 分類系統 (標籤系統):
分類往往是人在搜尋東西最直覺的方式, 由多到少, 由上到下的分層分類法在人類的思維大概是種本性, 當然比較早期的模式因為儲存方式與成本是用階層式的分類系統, 現在主要是用網狀標籤系統或者是單純的 Tag 系統, 這都是行為輔助的聚焦方法, 非常符合人性, 說是沒有用是說不過去, 因此若沒有一個基礎的分類或標籤系統, 就輸了一大半.
2. 排行榜:
當有了瀏覽與購買行為出現之後, 接下來就是排行榜, 畢竟, 人的行為不是具有共通點, 不然就是會有群眾效應, 或者是經過媒體廣告行銷等催化的結果就是排行榜, 越多人買的東西往往代表有一定的趨勢, 這個在不是網路行銷時本來就很有用, 但畢竟在早期資源有限, 無法分群與個人化的前提下, 排行榜多少也是唯的方式, 所以無論是沒有排行榜資訊或只有排行榜資訊, 是件很糟糕的事.
3. 分類排行榜:
當然前面兩個方法都是有用的, 加起來也一定是有用的, 且當分眾之後, 理論上資訊會更正確, 因此若是沒有更好的推薦方式之前, 用這分類與排行這兩個基礎是相當簡單且好開發的, 只是這差別是在分類要多細緻, 或者是說可以用在其他的的方, 例如搜尋結果頁之類.
4. 消費者背景 (因子分析):
分類可以對產品作切割, 消費者也可以從背景資料 (Profile) 來看你的產品是否有對到 Target Audience, 當然這部份可以用先驗的刻板印像來去執行, 也可以用因子分析來做檢驗, 當確定其目標客群後, 就可以用此 TA 來做推薦, 這算是最基本的差異化行銷, 只是這因子的切割再怎麼切也無法切到單一個人 (Individual), 所以是有局限的.
5. 關聯分析:
前四個推薦系統都是不須要做到 Data Mining 的方法, 而關聯分析可以說是第一個基礎, 從距離 (Distance) 到關聯分析 (Relation Analysis), 而在 10 年前之前, 關聯分析所須要的設備與資源是相當龐大的負荷, 但現在的今天, 已經是相當簡單就可以完成的, 所以現在已經是很多有在做電子商務的必備功能了, 這個最大的決策點只是算出 ROI, 理論上技術門檻已經不會像之前那麼高了, 只是前提還是要有開發能力的人或找到對的廠商而已.
6. 關聯系統再應用:
有了最基礎的關聯分析, 能夠發展的應用就很多元了, 關聯只是個基礎, 經過幾次關聯的疊迨與交叉比對, 能夠延伸出更多的關聯, 或者是聚焦到更精確的商品, 當有不只一個商品的記錄, 就可以算出更準的推薦, 或者是找到更多與消費者類似的消費者, 從中也可以算出最新即時的建議, 所以透過這種方式, 就可以在一定時效內找出一定數量的商品推薦, 唯一的問題是如何決定商業邏輯.
7. 語意網路:
上面這些都是不須要有太多的前置作業或外部資源與環境就能開發的系統, 但商品推薦若透過關鍵字或 Tag, 甚至透過語意網路的切割與分析, 可以把推薦的準確度再次提升, 只是這系統要先行建立語意網路, 要建立一套有意義可應用的語意網路資料庫, 往往是須要很多時間的資料累積, 以及一個系統化的流程設計, 加上語意分析, 在關聯系統沒有足夠資料前, 說不定是更準確的
8. 社群資源:
在一個好的 Big Data 設計, 不只是靠 Data Mining, 也不只是靠 Semantic Web, 有時須要的更大的資料庫, 就是更多的社群資源, 透過商品與消費者的社群資料, 往往能夠獲得比電子商務網站現有資料大上百倍萬倍的 Big Data, 若能夠把這些資源串連起來, 不只是更精確的可能性而已, 而是能夠兼具開發新客源的能力, 只是這個不只是要有能夠了解與開發這些系統的人, 更困難的是如何建立起 BI (Business Intelligence) 才是最大的挑戰.
9. 個人單品預測:
有了這些資源, 事實上要去做到單品個人的銷售機率已經不是難事了, 也就是說幫消費者提供最佳的決策參考已經不是夢了, 雖然現在已經可以實作, 甚至準確度都比前面都來得更高, 但在量與規模的資源耗用可能不合 ROI, 除非是在可預期的未來讓成本降低到一定程度, 或是產品本身的價值夠高, 才有實作的價值.
事實上這九點本身有些就是 "組合技" 或是 "基本技", 有些可以再延伸, 例如 "協同過濾與推薦", 就是種應用社群資源以及關聯分析的組合, 大部份背後的技術都並不困難, 或者是說, 做出來並不困難, 困難的是在提升準確度, 只是就實務面是每一項做出來就有 10% 的準確度, 加起來就有 90% 了, 而想靠單一系統做出這樣的準確率是很難的... (事實上不能這樣算, 只是用這樣說明好理解)
所以若是在總營業額或毛利率不高的話, 當然前幾項做出來就好, 但相對的是個很大的市場價值時, 每一項都要花多一點資源做得更好, 更準, 畢竟每一項雖然看起來很單純, 但在參數與適用範圍須要去研究與改善的點還是相當的多, 這些都是須要去開發與驗證, 但我相信投入一定有回報, 為使用者多想一點, 對商品多了解一點, 就可以設計出很好的系統.
希望這份指南對一些還沒經歷過這些事的人有幫助, 實作過的人就當參考吧.
(原標題: 商品推薦系統, 有時並不須要從 Big Data 開始)
訂閱:
張貼留言 (Atom)
熱門文章
-
在寫作 Google Friend Connect 的 Custom Gadget 時, 有發現有幾個重要的參數: 1. Site ID: 這個網站的 ID, 目前並沒寫在任何 Open Social 的 Spec 2. Personal ID: 判別誰是誰的東西, 最主要是拿來...
-
依 IMDB 超過 1 萬人以上評分的順序 降世神通 1. 9.3 Avatar 降世神通 2. 9.2 Ricky and Moorty 3. 9.1 鋼之鍊金術師 Brotherhood 4. 9.0 進擊的巨人 5. 9.0 獵人 6. 9.0 死亡筆記本 11. 8.8 ...
-
以下的言論, 純以我是以一個工程師出身的網管, 也以做過 ISP 基礎建設的工作經驗來發言. 前一陣子有人提出取消手機網路不應該有吃到飽 (Flat Rate) 的奇想時, 有參與網路發展的人都知道, 這個固定費率的使用量是網路發展的推手, 或者是指標, 甚至是門檻, 若把這...
-
這篇報導是在 http://tw.news.yahoo.com/article/url/d/a/100809/11/2ar0a.html 這裏, 到中午, TWNIC 的人就一直打電話給我, 而我還在會議中搞不太清楚是甚麼, 但就大意上面指的都是講了很多有問題的話, 而我一上...
-
一些比較消息靈通的人都知道 Seednet 做了一個 TaiwanRank, 以自己用戶的使用狀況來作網站的另一種排名, 而目前推出的指標是 DNS 查詢數 及 不重覆IP 的兩個排行.. 有人問我這樣到底準不準阿? 事實上我常說, 沒有一種指標或觀點能夠覆概所有事情, 當然是越...
-
雖然台灣的資訊科技網站或部落格真的很多, 但仔細看, 不少都是 "全文翻譯" 國外的網站, 不加任何自己的想法, 不然就是為了寫而寫, 此時來看, 不要說是獨立思考的創見已經看不到, 連獨立寫作的內容已經消失了. 這篇文章我早在去年 11 月時就想寫了, ...
-
一些無聊晃進來的朋友應該有發現, 左上角多了幾個之前沒看過的 gadget, 因為我又開始做無聊事了... 看到許多人裝 Google Friend Connect, 而我個人對較為開放的 Protocol 是採較為正面的態度, 所以就裝起來玩玩看, 覺得這是一個可以發展的東西,...
-
上一篇還有很多沒寫到的地方: 1. 在最初的規劃這個數字是 Increamental 的, 也就是為了避免沒有抓到資料時的問題, 而這三種數字有兩個是一直增加的, 一個卻是在變化的. 2. 在第二組的距離, 事實上最後應該只會採用一個, 做一下 x*y*z 應該對資源影響不大. ...
-
經營網站是相當不容易的, 尤其是維護一個知道無法賺錢的網站, 像這次 MyBlogLog 而言, 真的是發生很多很多事阿, 尤其對我而言更是要加上一筆. 1. 在部落格觀察之前, 有一個 Room 計劃, 是比部落格觀察更早規劃成熟的計劃, 是一個以到訪為觀點的足跡社群, 那值時...
-
在 SEO 圈的人, 看到我前一篇 " 從連結的生與死來談網站連結準則 " 知道是為了要回應嚴先生對於之前的連結做探討, 而前幾天有人說他也寫了 " 從 Nofollow 看 SEO 的未來 " 這篇來做回應, 我當下跟朋友說: ...
感謝分享:)
回覆刪除